Drilling and Integrity of Geothermal Wells - Issues and Challenges

Parveen Sachdeva Blade Energy Partners

Geothermal Well Integrity

- Geothermal wells generally present as high temperature, low pressure applications
- Characterized by hot brine production at extremely high rates
- Areas affecting Well Integrity
 - Drilling / Well Planning
 - Production Fluids Chemistry
 - Well Design and Operations
 - Well Construction

Drilling / Well Planning

- Formations are hard, abrasive, and at high temperature
 - Hot (150°C to 300°C), abrasive, hard (> 240 MPa or 35,000 psi UCS)
 - Bit and BHA selection and QA/QC is challenging –premature failures reported
- Lost Circulation
 - Most geothermal reservoirs are associated with local or regional faulting
 - High permeable features are common
 - Major problem- typically represent ~15% of well costs
 - LC issues also affect cementing
 - Mud Cap drilling / Drilling with Casing are options
- Formation Damage while drilling

Drilling / Well Planning

- Cementing and bringing cement to surface
 - Important to have good cement to surface reverse circulation is an option
 - _ •

Production Fluid Chemistry

- Virtually all geothermal fluids contain CO₂ and H₂S, and other corrosive elements and compounds; Acid Discharge is also possible.
- Chemical composition of produced fluid is often overlooked or ignored, but it has enormous impact on
 - Corrosion- mechanism, rate and mitigation
 - Cracking and brittle failure
 - Material selection (and not just the well!)
 - Scaling and precipitation
 - Monitoring and maintenance programs
 - Thermodynamic assurance and surface system design
- It is important to test production fluids and define chemical composition.
- Overlooking this can lead to many avoidable drilling and well integrity problems and affect well life.

Well Design and Operations

High Temperatures

- Working Stress Design may result in choice of higher grades than necessary, compromising material selection constraints
- Appropriate choice is a post-yield design basis, as pressures are usually quite low

Low Temperatures

- Quench load imposes coldest thermal conditions- increasing temperature swing
- Low temperature creates conditions favorable to cracking and brittle failure
- Rate of quench may result in thermal shock conditions
- Cycling between production and shut in / quench causes fatigue
 - A Low Cycle Fatigue Approach is needed
- Connection Selection is often overlooked or oversimplified
 - Most thermal well failures occur in connections
 - API connections with high make-up hoop stress threaten well integrity
 - Appropriate connection qualification and LCF-based selection criteria are required

Well Design and Operations

- Well design for geothermal wells is very similar to that of conventional oil and gas wells
- Specific to tubular design, challenges in geothermal wells arise from
 - Temperature and thermal effects
 - Chemical composition of produced fluids
 - Rate of production / Pressure depletion
- Similarities to other thermal service wells (Steam Stimulation)
 - High temperature cyclic loading
 - Geomechanically induced strain
- Differences
 - No hydrocarbon produced (except in co-production)
 - Corrosion considerations are more important (produced fluids)

Typical Loads to Consider in Design

- Key loads for a geothermal production string
 - Running and Overpull
 - Cementing
 - Bump Plug
 - Cementing Bleed
 - Cementing Evacuated
 - Reverse Cementing
 - Pressure test 70% API MIYP† and/or 1100 psi
 - MAWP at surface; fracture gradient at casing shoe; pore pressure outside
 - Kick
 - Production (thermal)
 - Cold Shut-in (thermal)
 - Bullhead Kill
 - Quenching (thermal), typical rates 10-20 BPM
 - Cold Collapse (during Quench)
- Liners may have additional loads (pre-perforated, slacked off, hanger loads)

Temperature and Thermal Effects

Typical Causes of Failure

Mechanical

- Cyclic loading and fatigue
- Connection failures
- Quenching / Bullhead Kill overloading
- Cement Related Unsupported section buckling, APB, cement de-bonding, deterioration, Wellhead forces, surface string overload

_

Mitigations - Mechanical

- Cyclic loading and fatigue
 - Use LCF approach at design stage, thermal management
- Connection failures

_


Mitigation – Material Selection

Corrosion

_

Post-Yield Design - An Example

- Thermal stress
- For a low carbon steel, this is approximately equal to 96,000 psi
- What grade should we select?

Modified Holliday Approach

- A deterministic High Temperature, Post Yield design approach analogous to WSD, wherein the extent of post-yield strain is limited by restricting the allowable stress
- Holliday Stress Ratio

Where the VME stress includes bending stress from doglegs or buckling of unsupported sections

- Maximum allowable stress ratio is restricted, to conservatively account for all the thermal effects, and limit tensile plasticization
 - 65 " WR IRU /

Uniaxial Design Basis

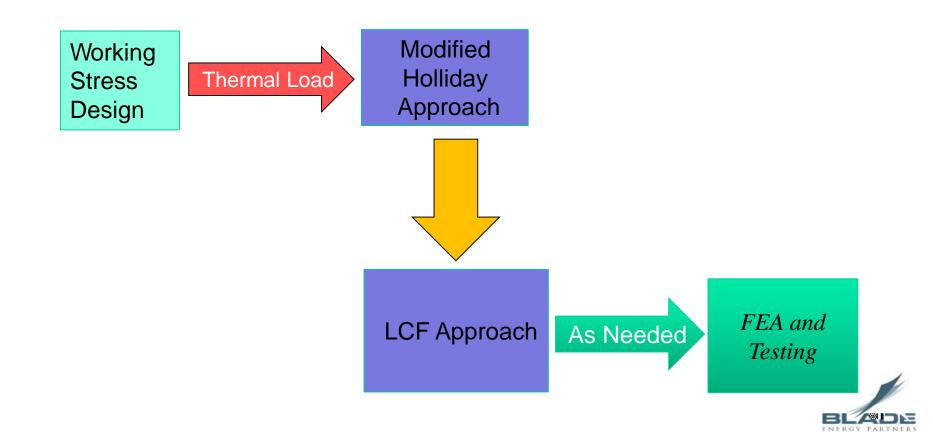
 For quick analysis, a uniaxial design check can be used to select or assess a casing grade for thermal application

```
\frac{\left|\begin{array}{c|c}a\right| V_b}{SMYS} \text{ d1.60}^V \text{(K55)}; & \text{Axial stress } 1_a \text{ can be approximated in psi as } 200\\ \text{d1.40 (L80)} & \text{Bending stress } 1_b \text{ is from dogleg or post-buckling} \end{array}
```

- Applying this to our example at the beginning:
 - SR = 96,000/55,000 = 1.75 for K55 = 96,000/80,000 = 1.20 for L80
 - Thus L80 is a viable choice from Modified Holliday Approach
- The Modified Holliday Approach cannot be directly applied to connection selection, as connection stresses are not known.

LCF Approaches

Non-satisfaction of Holliday criteria does not imply failure.



Design Using MHA and LCF

- For a typical geothermal well completed with a 13 3/8" liner/tieback
- Design shows that the string satisfies WSD criteria for all loads (including quenching) except for Hot Production (VME SF = 1.03)
- Using Modified Holliday Approach
 - VME Stress = 67,900 psi.
 - Holliday Stress Ratio (L80) = 0.87
 - Holliday Stress Ratio (K55) = 1.23
 - Even K55 is an option according to MHA!
- Using LCF Approach
 - Full thermal cycles (production to quench)
 - Proprietary connection assumed
 - LCF limit for L80 is 238 cycles
 - Even for K55, LCF limit is greater than 150 cycles (functional requirement)

Proposed Design Process

Summary

- Water Chemistry assessed as a function of temperature, pressure and time
 - Incorporate acid gas and other intervention events into the design
- Ensure Corrosion analyses is part of the well design
- Incorporate relevant well loading scenarios into design that includes chemistry
 - Sulfide Stress Cracking
 - Low pH, Low Temperature
 - Stress Corrosion Cracking (Caustic Cracking)
 - High pH (over 9) and High Temperature
- Connection has to be addressed with chemistry and cracking in tow
- These considerations may help prevent well failure
 - Better cement job
 - Packer completion
 - Lower grade pipe (using Post Yield design)

