

Hot Rock Limited

A Review of Current Geothermal Development Activities in the Otway Sedimentary Basin, Victoria, Australia

> Peter Barnett and Kerry Burns SMU Conference, Dallas 17-18 June, 20088

Australia'

Strong drivers for geothermal development in Australia

- **Š** Vast sources of deep heat
 - š In granites
 - **š** In wet and dry sedimentary rocks above the granites
- **š Pioneering "EGS" work by Geodynamics**
 - š Cooper Basin
 - š the 'right' tectonic environment
- Š Recent strong Government support for renewables
 - **š** Reduction of large carbon footprint
 - š Wind
 - š Geothermal
 - š Solar

Š

Rapidly growing private sector involvement in geothermal

Geo	thermal Stocks	ASX	Price	Shares (m)	Options (m)	Mkt Cap (\$m)	Area	Model
Geodyn	amics	GDY	\$1.55	211.6	4.0	334	SA/NSW	HDR
Eden Er	nergy	EDE	\$0.34	166.8	86.5	86	Focus on hydrogen	HDR
Petrathe	erm	PTR	\$0.85	57.9	13.1	60	SA/Spain	HDR/HWR
Geother	mal Resources	GHT	\$0.66	33.0	1.8	23	SA	HDR
Torrens	Energy	TEY	\$0.40	50.1	28.2	31	SA	HDR

Types of Australian Geothermal Resources

š High temperature granites >200°C

- Š Naturally impermeable / require fracturing
 Š "HDR" / "HFR" / "EGS"
- š Moderate temperature
 - sedimentary, 100-200°C
 - Š Naturally permeable š "HWR", "SG"
 - š Naturally impermeable
 - š thermal insulators above granites

HRL focus is on "Sedimentary Geothermal"

- š Naturally permeable systems
 - š Don't require hydro fracturing
- š Naturally wet
 - š Don't require injection of water / circulation loop
- š Lower development costs due to
 - š Shallower production drilling targets
 - š Higher well flow rates
- š Lower operating costs
 - š Reduced parasitic pump costs
- š Lower Risk
 - š Proven production and power plant technology
 - š 100 year history of geothermal electricity generation
 - š r.e/MCID 33 >>BDC /CS1 cs 0.604 1 0.396 scn-0.04 0.04 Td@083>Tjl

Onshore extent of Otway Basin

Onshore outcrops of Otway Basin sedimentary rocks

Otway Basin - Stratigraphy

š Thick sequences

of:

- Low permeability msts and zsts (thermal insulation) high porosity / permeability clean ssts
- Š Crustal thinning as a result of rifting
 Š Elevated heat flow
 Š Voluminous recent basaltic volcanism

Otway Basin – recent volcanism

Otway Basin – recent volcanism

Close proximity to markets &

HRL Otway Basin Geothermal Permits

- Š 4 permits cover large area of prospective Otway Basin (+18,000sqkm)
- š Anomalous geothermal gradients
 - š Elevated heat flow up through basement
 - Structurally controlled upflows of hot fluids from depth to shallow levels
 - Some association possible with young volcanic

Very large amount of surface & sub-surface data exists and is readily accessible

Invaluable existing exploration and well data

Š Decades of active oil and gas exploration

Otway Basin wells - measured temperatures

Otway sedimentary basin hydrogeological model

- Large sedimentary basin with several hot aquifers
 Geothermal reservoir contained in Early Cretaceous Crayfish Group
 - Up to 800m thick aquifer / High porosity 20% / High perm (1000 mD)
 - Temperatures of at least 142°C + at 2,700m to 3,500m depth

Initial assessment of geothermal resource capacity

- Š Volumetric stored heat calculations for 17 geothermal "depo – centres" in 4 GEP's, based on simple conceptual exploration model with conservative assumptions yield:
 - š potential power generation targets ranging from 300 to 720 MWe per prospect, 1750MWe in total
 - š 40% of Victoria's base load power
 - š potential total annual gross revenues of A\$ 1.1billion
- Suggests initial pilot plant of 1MWe with series of staged subsequent commercial power developments with a capacity of 50 MWe per plant

Current Status HRL Program

Š

Koroit Area: Priority Development Target

Anticipated Longer Term Program at Koroit: up to 4 x 50MWe by 2013

Market Considerations

- š Good geothermal market in Victoria
 - š For both electricity and cascaded waste heat from power plant
- š Potential off-takers:
 - š Utilities
 - \check{s} Local LV (22kV and 66kV) and HV
 - š Industrial
 - š Alcoa aluminum smelter
 - š Dairy Industry (Goulburn Co-op)
 - š Portland City (hot water)
 - š Timber chip and pulp industry (drying)

Composition of average power price in Australia - 2007 (source BBP)

Development Costs / Costs of Power ?

HRL Development Assumptions

- š Production wells
 - š depths 3,500m
 - š 12-1/4 inch holes to 3500m with 13-3/8 inch PCsg
 - š shallow down-well electric production pumps
 - š 4 MWe per well production rates
 - š 16 wells for 65MWe gross / 50MWe net development
- š Injection wells
 - š depths 1500m
 - š 13 wells required for 50MWe net plant
- š Power Plant
 - š Organic

Key financial assumptions

Assessed Costs for HRL 65MWe (gross) development

- š Capital Cost
 - š \$US300m
- š Specific Capital Cost
 - šš\$US 4,600 / kWe
 - š (wells, power plant, transmission)

š Power tariff

Incentives – State Level

š Victoria Geothermal Act has no royalty

š VRET Scheme (Jan 2007)

- Š State government is committed to reducing Victoria's greenhouse gas emissions to 60% by 2050
- š mandates Victoria's consumption of electricity generated from renewable sources be increased to 10% by 2016
- š objectives to encourage additional generation of electricity from renewable sources.
- š Renewable energy fund of \$72million (April 08)
 - š ex Clinton Foundation
 - š to assist large-scale sustainable demonstration energy projects, including geothermal

Incentives - Federal Level ..1

- S Mandatory Renewable Energy Target (MRET) policy to be introduced to reduce the effects of climate change caused by greenhouse gas emissions
 - Š Aiming for 2% of Australia's power supply from renewable sources by 2010 and 20% or 42,000 (60,000 ?) Gigawatt hours by 2020.
 - š MRET expected to replace VRET

Incentives - Federal Level ..2

- š Emissions trading scheme to be introduced 2010
 - š Renewable Energy Certificates (RECs) to be issued to eligible parties
 - š RECs are sold by the holder to other registered groups and add to the renewable power generators income.
 - š fossil fuel generators will need to add the cost of emission certificates to their generating costs
 - š a maximum penalty for a power generator not complying with the emission targets is \$40 MWh for the power they sell
- š These changes are expected to:
 - š increase power prices, favouring renewables
 - š cause a major shift in investment towards renewable energy sources as it becomes more competitive

Incentives - Federal Level ..3

 Š Federal government is also in advanced stages of planning for:
 š a \$500 million Renewable Energy grant fund
 š includes a \$50 million drilling fund for goothermal

š includes a \$50million drilling fund for geothermal production wells

š Objectives are to:

š encourage early investment into renewable energy demonstration projects

š expand the range of renewable technologies

www.hotrockltd.com

